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1 Introduction

Recommender systems are among the most popular applications of big data analytics. The main goal
is to predict whether a user would like a certain item : a product, a movie, a song, etc. In this tutorial,
we’ll learn how to implement various recommendation algorithms using an open-source
recommendation library : Cornac. Then, we will apply diversification algorithms to enhance the
diversity of recommendations. We will be using the MovieLens dataset to build movie
recommendations.

2 Dataset

The dataset we will use for this tutorial comes from the MovieLens website. It is very often used by
researchers and industrials to experiment with a variety of recommender systems and compare their
performance. We will use a subset of the dataset : MovieLens 1M Dataset. This dataset contains 1M
user ratings for over 4000 movies (ratings.csv). In this file, users and movies are identified with
integers, and ratings are integer values from 1 to 5. Furthermore, meta-data about movies is available.
For this exercise, we will use the 18 movie genres used to annotate movies. This information is
available in movies.csv along with the title of each movie.

Let’s have a quick look at what this data looks like. Here’s some python script to do that :
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import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

ratings = pd.read_csv(’/path/ratings.dat’, sep=’::’, header=None, names=[’UserID’, ’
MovieID’, ’Rating’, ’Timestamp’], engine=’python’)

movies = pd.read_csv(’/path/movies.dat’, sep=’::’, header=None, names=[’MovieID’, ’
Title’, ’Genres’], engine=’python’, encoding=’latin-1’)

print(ratings.head())
print(movies.head())

plt.figure(figsize=(10, 6))
sns.countplot(x=’Rating’, data=ratings)
plt.title(’Distribution of Movie Ratings’)
plt.xlabel(’Rating’)
plt.ylabel(’Count’)
plt.show()

3 Getting started with recommendations

Make sure to install the recommandation library. Please follow the installation here

3.1 Load and split the dataset

The first step before starting implementing and testing about recommendation algorithms is to load
the dataset and split it into a train set and a test set :

The cornac library provides some utilities to do that very easily. Have a look at the following :

• Reader
• Dataset
• StratifiedSplit
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from cornac.data import Reader, Dataset
from cornac.eval_methods import StratifiedSplit

data = Reader().read("path/ratings.dat",
sep="::",skip_lines=0,fmt="UIRT")

dataset= Dataset.from_uir(data)
split= StratifiedSplit(data,test_size=0.2, seed=42, ,rating_threshold=4)
train_data=split.train_set
test_set=split.test_set

We are now ready to implement some basic recommendation algorithms

3.2 Item-based Collaborative Filtering

Item-based k-Nearest Neighbors (ItemKNN) is a collaborative filtering algorithm used for building
recommendation systems. ItemKNN focuses on the similarities between items. The main idea is to
recommend items that are similar to those the user has already liked or interacted with. Here’s a
step-by-step breakdown of how ItemKNN works :

1. Item Similarity Computation : Compute the similarity between each pair of items. The most
used similarity measure is the cosine similarity.

2. Neighborhood Formation : For each item, identify the k most similar items, forming its
neighborhood. The value of k is data-dependent

3. Recommendation Generation : To make a recommendation for a user, look at the items the
user has already rated. For each of these items, identify its k-nearest neighbors and aggregate
their ratings to generate a list of recommended items. Items with the highest aggregated scores
are recommended to the user.

Let’s see how this is done in cornac

• ItemKNN

from cornac.models import ItemKNN
itemcf=ItemKNN(k=10)
itemcf.fit(train_data)

3.3 User-based Collaborative Filtering

User-based k-Nearest Neighbors (UserKNN) is another collaborative filtering algorithm used in
recommendation systems. The core idea behind UserKNN is to make recommendations based on the
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preferences of similar users. UserKNN is intuitive and leverages the idea that users who have rated
items similarly in the past will continue to have similar preferences. It’s especially effective when users
have a rich history of interactions. Here’s how it works :

1. User Similarity Computation : Calculate the similarity between users based on their ratings
of items. Common similarity measures include cosine similarity, Pearson correlation, and Jaccard
index.

2. Neighborhood Formation : For each user, identify the k most similar users (neighbors). The
value of k can be tuned for better performance and depends on the dataset.

3. Recommendation Generation : To recommend items to a user, aggregate the ratings from their
neighbors. Items that the neighbors liked or rated highly are recommended to the user.

Similarly, this is done easily using cornac :

• UserKNN

from cornac.models import UserKNN
usercf=ItemKNN(k=10)
usercf.fit(train_data)

3.4 Matrix-Factorization using SVD

Singular Value Decomposition (SVD) is a powerful matrix factorization technique used in
recommendation systems, particularly for collaborative filtering. The core idea is to decompose the
user-item interaction matrix into latent factors representing users and items, which can then be used
to predict missing entries (e.g., ratings). SVD is popular due to its effectiveness in capturing the
underlying structure in the data, reducing dimensionality, and handling sparse matrices typical of
user-item interactions. Here’s a step-by-step breakdown of how SVD works in recommendation
systems :

1. User-Item Matrix : Start with a matrix R, where rows represent users, columns represent
items, and entries represent user-item interactions (e.g., ratings).

2. Matrix Factorization : Decompose this matrix R into three matrices :

• U : A user-feature matrix where each row represents a user in terms of latent factors.
• Σ : A diagonal matrix with singular values, representing the strength of each latent factor.
• V T : An item-feature matrix where each column represents an item in terms of latent

factors.

3. Loss Function : The objective is to minimize the reconstruction error between the original
matrix R and the product of the decomposed matrices UΣV T . This is typically done using the
following loss function :
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This is done in 3 lines of code using the library

• SVD

from cornac.models import SVD
svdmodel=SVD()
svdmodel.fit(train_data)

3.5 Let’s see how to get recommendations

Cornac makes it very easy to generate top-k recommendations. For any trained models, there are
several methods you can apply to compute prediction scores, get rankings, etc. You can have a look at
some of the methods below :

• Rating prediction for a user-item pair
• Rank
• Recommend

You task is to write some code to provide users with recommendations, according to an already
trained model. You should compare the recommendations of different models.

itemcf= ItemKNN(k=10, similarity=’cosine’)
itemcf.fit(train_data)

user_id = ’42’

recommendation_list= FIXME to get top-5 recommendations

you should also use the file ’movies.dat’ to print movie title and genres instead of
seeing just movieIds

4 Diversifying Recommendations

Now let’s see how we can incorporate more diversity in the recommendation we get. In the following
subsections, details about some diversification algorithms are presented. Within your group, you
should pick one algorithm and try to implement it. The idea is compare the recommendations that are
generated from the original algorithm and the recommendations that are diversified.
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4.1 Maximal Marginal Relevance (MMR)

A widely used approach to combine relevance and diversity is the greedy MMR [3, 5]. Given the set of
already recommended items S that is initialized to the most relevant item, MMR selects at each step an
item i∗ that maximizes a linear combination of the utility of the selected item and the gain in diversity
that is achieved according to already selected items. More formally, it chooses i∗ such that (α ∈ [0, 1]) :

i∗ = arg max
i∈I\(P∪S)

(
(1− α) · utility(i) + αmin

j∈S
dist(i, j)

)

where α is a parameter that tunes the relative importance of each of the two factors. Small values of α
means more importance on the utility of recommended items and high α values means that more
importance is put on diversifying the resulting set.

4.2 Max-Sum Diversification (MSD)

MSD is based on the p− facility dispersion problem, where the goal is to select a set of p facilities on a
network so that the minimum distance between any pair of facilities is maximized [4]. Like in MMR, the
objective comprises two terms. Here, the first term is a modular function g(.) that calculates the utility
of a given set S and the second term measures the diversity of S (α ∈ [0, 1]) :

S∗ = arg max
|S|=k,S⊂I\P

(1− α) · g(S) + α
∑
i∈S

∑
j∈S−{i}

dist(i, j)


The problem is known to be NP-Hard, but greedy MSD gives an approximation guarantee [2]. In our
setting, g(S) =

∑
i∈S utility(i). Small values of α means more importance on the utility of

recommended items and high α values means that more importance is put on diversifying the resulting
set.

4.3 SWAP

SWAP [6] is a re-ranking based approach that starts with ranking all items according to their achieved
utility. It then picks the k items with the highest utilities and iterates through items and swaps the
item from the top-k list that contributes the least to diversity with the next highest utility item only if
the swap brings more diversity in the recommendation list. SWAP uses a utility upper bound ub as a
condition to stop the swapping which corresponds to how much drop in utility is tolerated.

Here, are the steps to build the swap algorithm
• Generate initial recommendations based on utility scores
• Define a diversity metric : for example intra-list-distance
• Calculate the initial diversity score of the top-k recommendation list
• iterate through other items and identify pairs of items in the recommendation list that could be

swapped. Swappable pairs are usually those where swapping could increase the overall diversity
score without significantly reducing the relevance.
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• After each swap, evaluate the new recommendation list’s relevance and diversity. Ensure that the
relevance of the list does not drop below a certain threshold ub
• Iterate until the allowed drop on relevance is achieved.

4.4 Diversity-weighted Utility Maximization (DUM)

DUM [1] tackles the diversity problem by maximizing the utility of the selected items weighted by the
gain they provide in diversity. The utility of items is the main objective but it is subjected to
increasing the diversity of the recommendation list. The gain in diversity is measured by the number of
different topics that are covered by the recommendation list. The objective function of DUM is to find
an optimal ordering of items S∗ as follows :

S∗ = arg max
S∈Θ

|I|∑
k=1

[f(Sk−1)− f(Sk)] · u(ik)

where S = [i1, i2, ..., i|I|] is an ordering of items in the whole set I, Θ is the set of all item
permutations, Sk = {i1, ..., ik} is the set of the first k elements in S. The term f(Sk−1)− f(Sk)
measures the gain in diversity that is achieved when ik is added to Sk−1, and u(i) measures the utility
of item i. To recommend k items DUM, the proposed greedy algorithm first ranks all items according to
their utility and then iteratively selects the next item if an only if it increases the diversity.
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